电竞

Python:SimPy 简化了复杂模型

2019-12-03 07:04:04来源:励志吧0次阅读

本文中,David 讨论了 SimPy,它是一种 Python 包,允许您非常方便地创建离散事件系统的模型。

随机的定义

与“连接”相类似,它是那些最适合形容其作业的词汇之一 — 再也找不到更适合的了:

随机(stochastic),源自希腊语 stokhastikos(形容词)

1)推测的、与推测相关的或者具有推测特点的;好推测的。

2)在统计学上:涉及或包含一个随机变量或多个随机变量,或涉及偶然性或概率。

模拟的概念

SimPy 库只提供了三个抽象/父类,并且它们对应于模拟的三个基本概念。有许多其它常规函数和常量用于控制模拟的运行,但重要的概念都与这些类结合在一起。

模拟中的核心概念是进程。一个进程只是一个对象,它完成某些任务,随后在它准备完成下一个任务之前有时会等待一会儿。在 SimPy 中,您还可以“钝化”进程,这意味着在一个进程完成一个任务后,只有当其它进程要求该进程完成其它任务时,它才会去做。把进程当作尝试完成一个目标,常常是很有用的。在编写进程时,通常把它编写成可以在其中执行多个操作的循环。在每个操作之间,可以插入 Python“yield”语句,它让模拟调度程序在返回控制之前执行每个等待进程的操作。

进程执行的许多操作取决于资源的使用。资源只是在可用性方面受到限制。在生物学模型中,资源可能是食物供应;在网络模型中,资源可以是路由器或有限带宽通道;在我们的市场模拟中,资源是付款通道。资源执行的唯一任务是在任何给定的时间内将它的使用限于一个特定的进程上。在 SimPy 编程模型下,进程单独决定它要保留资源的时间有多长,资源本身是被动的。在实际系统中,SimPy 模型可能适合概念性方案,也可能不适合;很容易想象到资源在本质上会限制其利用率(例如,如果服务器计算机在必需的时间帧内没有获得满意的响应,则它会中断连接)。但作为编程问题,进程或资源是否是“主动”方就不是特别重要(只要确保您理解了您的意图)。

最后一个 SimPy 类是监控程序。实际上监控程序不是很重要,只不过它很方便。监控程序所做的全部任务就是记录向它报告的事件,并保存有关这些事件的统计信息(平均值、计数、方差等)。该库提供的 Monitor 类对记录模拟措施是个有用的工具,但您也可以通过您想使用的其它任何技术来记录事件。事实上,我的示例使 Monitor 子类化,以提供某些(稍微)增强的能力。

设置商店:对模拟编程

本例中,我认为带您经历食品杂货店应用程序的每个步骤会更有用。如果您愿意的话,可以把每个部分剪贴在一起;SimPy 创造者们将在将来的发行版中包含我的示例。

SimPy 模拟中的第一步是几个常规的导入(import)语句:

清单 1. 导入 SimPy 库 #!/usr/bin/env python

from __future__ import generators

from SimPy import Simulation

from SimPy.Simulation import hold, request, release, now

from SimPy.Monitor import Monitor

import random

from math import sqrt

有些 SimPy 附带的示例使用 import * 样式,但我更喜欢使我填充的名称空间更清晰。对于 Python 2.2(SimPy 所需的最低版本),将需要如指出的那样,导入生成器特性。对于 Python 2.3 以后的版本,不需要这样做。

对于我的应用程序,我定义了几个运行时常量,它们描述了在特定的模拟运行期间我感兴趣的几个方案。在我更改方案时,我必须在主脚本内编辑这些常量。要是这个应用程序的内容更充实,那么我就可能用命令行选项、环境变量或配置文件来配置这些参数。但就目前而言,这个样式已经足够了:

清单 2. 配置模拟参数 AISLES = 5 # Number of open aisles

ITEMTIME = 0.1 # Time to ring up one item

AVGITEMS = 20 # Average number of items purchased

CLOSING = 60*12# Minutes from store open to store close

AVGCUST = 1500 # Average number of daily customers

RUNS = 10 # Number of times to run the simulation

我们的模拟需要完成的主要任务是定义一个或多个进程。对于模拟食品杂货店,我们感兴趣的进程是在通道处付款的顾客。

清单 3. 定义顾客的操作 class Customer(Simulation.Process):

def __init__(self):

Simulation.Process.__init__(self)

# Randomly pick how many items this customer is buying

self.items = 1 + int(random.expovariate(1.0/AVGITEMS))

def checkout(self):

start = now()  # Customer decides to check out

yield request, self, checkout_aisle

at_checkout = now() # Customer gets to front of line

waittime.tally(at_checkout-start)

yield hold, self, self.items*ITEMTIME

leaving = now() # Customer completes purchase

checkouttime.tally(leaving-at_checkout)

yield release, self, checkout_aisle

每位顾客已经决定采购一定数量的商品。(我们的模拟不涉及从食品杂货店通道上选择商品;顾客只是推着他们的手推车到达付款处。)我不能确定这里的指数变量分布确实是一个精确的模型。在其低端处我感觉是对的,但我感到对实际购物者究竟采购了多少商品的最高极限有点失实。在任何情况下,您可以看到如果可以使用更好的模型信息,则调整我们的模拟是多么简单。

顾客采取的操作是我们所关注的。顾客的“执行方法”就是 .checkout()。这个进程方法通常被命名为 .run() 或 .execute(),但在我的示例中,.checkout() 似乎是最可描述的。您可以对它起任何您希望的名称。Customer 对象所采取的实际操作仅仅是检查几个点上的模拟时间,并将持续时间记录到 waittime 和 checkouttime 监控程序中。但在这些操作之间是至关重要的 yield 语句。在第一种情况中,顾客请求资源(付款通道)。只有当顾客获得了所需的资源之后,他们才能做其它操作。一旦来到付款通道,顾客实际上就在付款了 — 所花时间与所购商品的数量成比例。最后,经过付款处之后,顾客就释放资源,以便其他顾客可以使用它。

哈尔滨那家医院治癫痫病的好
安徽治疗宫颈炎医院
苏州牛皮癣医院哪家最好
富顺县妇幼保健院预约挂号
南京京科医院黄刚
分享到: